Nitrogen

NITROGEN

Nitrogen is an essential nutrient for plant growth, development and reproduction. Despite nitrogen being one of the most abundant elements on earth, nitrogen deficiency is probably the most common nutritional problem affecting plants worldwide – nitrogen from the atmosphere and earth's crust is not directly available to plants.

Nitrogen in Plants
Healthy plants often contain 3 to 4 percent nitrogen in their above-ground tissues. This is a much higher concentration compared to other nutrients. Carbon, hydrogen and oxygen, nutrients that don’t play a significant role in most soil fertility management programs, are the only other nutrients present in higher concentrations.

Nitrogen is so vital because it is a major component of chlorophyll, the compound by which plants use sunlight energy to produce sugars from water and carbon dioxide (i.e., photosynthesis). It is also a major component of amino acids, the building blocks of proteins. Without proteins, plants wither and die. Some proteins act as structural units in plant cells while others act as enzymes, making possible many of the biochemical reactions on which life is based. Nitrogen is a component of energy-transfer compounds, such as ATP (adenosine triphosphate). ATP allows cells to conserve and use the energy released in metabolism. Finally, nitrogen is a significant component of nucleic acids such as DNA, the genetic material that allows cells (and eventually whole plants) to grow and reproduce. Without nitrogen, there would be no life as we know it.

Most plants take nitrogen from the soil continuously throughout their lives, and nitrogen demand usually increases as plant size increases. A plant supplied with adequate nitrogen grows rapidly and produces large amounts of succulent, green foliage. Providing adequate nitrogen allows an annual crop, such as corn, to grow to full maturity, rather than delaying it. A nitrogen-deficient plant is generally small and develops slowly because it lacks the nitrogen necessary to manufacture adequate structural and genetic materials. It is usually pale green or yellowish because it lacks adequate chlorophyll. Older leaves often become necrotic and die as the plant moves nitrogen from less important older tissues to more important younger ones. On the other hand, some plants may grow so rapidly when supplied with excessive nitrogen that they develop protoplasm faster than they can build sufficient supporting material in cell walls. Such plants are often rather weak and may be prone to mechanical injury. Development of weak straw and lodging of small grains are an example of such an effect.

Hot Products